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a little further in order to point out an ap-
parent anomaly in the use of hybrid modes.

In addition to the problem just dis-
cussed, six-component hybrid modes have

been found to be necessary for general
solutions in ferrite-loaded rectangular wave-
guides8, 9 and in rod-loaded, dielectric or

ferrite, circular guides.”o Hybrid mode

solutions have been found by taking linear

combinations of TE and TM modes in each
region and matching all fields parallel and
fluxes normal to the discontinuity; in prac-
tice, it is necessary to match only four com-

ponents to achieve this. To check this
method, we will compare the results ob-

tained in a particular problem which is
solved by both hybrid and LS modes.

Consider an isotropic, rectangular wave-

guide divided into two transverse regions
having different dielectric and magnetic

properties. The interface, in the x-z plane,

occurs at y = c and the guide sidewalls are
at y = O and y = b. Propagation is in the z
direction. The TE and TM solutions are

known in each region and are to be com-
bined in proportions to be determined by
matching considerations. There are four un-
known amplitude constants. By matching

four field components across the boundary,
the unknown constants may be eliminated,

resulting in an eigenvalue equation.

Matching E,, H., E., and H% at y= c we
find after some algebraic manipulation, that

These hold for all kz. To be sure that (52)

is not the same as (54), a numerical solution
of the latter was substituted into the former
and found not to be satisfactory. This must
almost certainly be true of (49) and (53)

as well. Even though the fields are com-

pletely matched in all cases, the eigenvalue

equations obtained are inconsistent !

As a variant of the previous hybrid ap-

proach, six-component hybrid modes were
formed by taking combinations of LSE and
LSM modes (where before, TE and TM
pairs were used). First of all, D. and By
were matched. Then, when E. and E. were
matched, (53) resulted; when Hz and H.

were matched, (54 ) was obtained. No dis-
agreement appears here as the eigenvalue

equations turn out correctly.

It is difficult to believe that (49) and

(52 ) are completely wrong. After all, they
were derived from modes that individually
satisfied Maxwell’s equations in the homo-

geneous regions and, taken in pairs, the in-

ternal boundary as well. Note that (53)

and (54) result from (49) and (52) when
k%= O is substituted. Although this condi-
tion is not physically realizable for LSM
modes and is unduly restricting for LSE
modes, it suggests that there are particular

values of k. (not necessarily zero) for which
correct solutions of (49) and (52) may be
found. It is likely that these roots corres~ond

to a restricted range of solutions and there-
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where the cutoff relation is

k.’ + k.’ + k,’ = k’ (50)

and

k. = – jr. (51)

The subscripts 1 and 2, on k, and k, refer to

the regions in which O <y <c and c< y <h,

respectively. k. and k, must be the same in

both regions so that the fields will be
matched for all x and z. k. is given by (44).

If now, E,, H,, E., and Du are matched,

(52) results.

fore furnish incomplete sets. Examination
may reveal that all the roots of (49) satisfy

(53) although, as was evident from the
numerical example, the converse is not al-

ways true.

Because of the questionable result ob-
tained, there is a good case for a critical re-

examination of the derivation and use of
hybrid modes. There is something unsatis-

factory about the present method and, un-
less the example given is fallacious, a num-

ber of similar studies will have to be recon-
sidered.

k,’(k,’ – k,’) [p,,,(k.z + k.,’) – p,e,(.k.’ + k.,’)].
. (52)
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The eigenvalue equations (49) and (52)
are both rather involved. We know, on firm
theoretical grounds, that LS modes should
give correct results. Therefore, using LSM

and LSE modes respectively, the following
are found:
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Measurement of Cutoff Frequencies

Measurements of guide wavelengths and
cutoff frequencies are often of interest in
experimental investigations of waveguides
with general cross sections. When necessary
measuring equipment is not available, the
phase constant measurement described by
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Altschulerl provides a simple method of de-
termining the cutoff frequency, which is
readily obtainable from the phase constant

of the waveguide. However, if a more accu-
rate determination is required, the preceding
method may not be adequate. A more ac-

curate and convenient method for determin-

ing cutoff frequencies is presented here.
It is assumed that the waveguide under

consideration is uniform, cylindrical, and
with an arbitrary cross section. It is possible
to form a resonant cavity by shorting both
ends of a guide. Through an iris in one of the
shorts, energy is fed into the cavity, and
resonance is observed using a directional
coupler and a detector setup as shown in

Fig. 1. Let .fo and j, be two resonant fre-
quencies of the cavity with fQ larger than ~0.

The two resonant modes must be in the same

transverse variation with only the number

of longitudinal variations differing by an
integer q. In other words, if m and n repre-

sent the transverse variational numbers, and
p represents that of the longitudinal, then

.fo is in the (m, n, p) mode, and fc is in the
(WZ,n, @+q) mode.

Fig. 1. Simplified diagram for observing
cavity resonance.

The electrical length of a waveguide with

two ideal shorts on both ends is a multiple
of ~ radians. However, due to the coupling
iris in one of the shorts, the length differs

from the ideal case by a fraction 3.’ At the

resonant frequency ~0, the electrical length
is expressed as follows:

pod = (N – h+r (1)

where BO is the phase constant, d is the
physical length of the line, and N is an in-

teger.
The physical length of the cavity at

resonance is a multiple of half guide wave-
lengths. In a similar argumentz the length is

d = (N – ~,)xo/2 at fO (2)

and

d = (N– 8, + q)&,/2 at f, (3)

where k~ and k~ are the guide wavelengths

at f 0 and f q, respective y. Using ( 1)–(3 ) and
eliminating N results into

2d = (q+& – &)&kO/(AO – x.). (4)

If the frequency range of operation is not
too wide, the fractions 80 and CTrare almost
equal, as will be demonstrated later. Equa-
tion (4), therefore, reduces to

q/2d = l/Xq – l/ko (5)
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and it is independent of 6, i.e., independent
of the coupling iris. Expressing the guide

wavelength of (5) in terms of resonant and

cutoff frequencies, and after simple alge-

braic manipulations, the cutoff frequency

of the waveguide is expressed as follows:

.fc’ = f,’ – [A/4 + (,f,’ – .fOZ)/A12(6)
where A = qc/d, and C=2.99792 X108
meters/s.

It should be noted that the accuracy of

(6) depends on tihe measurement of the
resonant frequencies ~g and jO. For long sec-

tions of waveguide, two adjacent resonant
frequencies (~= 1 ) are so close together tliat

commercial wave meters cannot give ac-
curate resolution. It is suggested, therefore,

that investigations be performed on rela-
tively short sections and that q be taken
greater than one.

A 2.996-inch K-band (WR-42) wave-

guide section was shorted on both ends with
a +inch coupling hole made at the center of
one end plate. The cavity has six resonant
frequencies in this band, with the first and

the sixth resonances occurring at 18.341

Gc/s and 25.798 Gc/s, respectively. The ctit-

off frequency calculated by (6) is 14.053

Gc/s (with q =5), with accuracy up to five
significant figures, compared with the exact

value 14.051 Gc/s. The value of the differ-
ence ~~— 80 is in the order of 10–fi, and the
magnitude of 8 is about 0.032. The average

of six cutoff frequencies each calculated for a
measured resonant frequency by the phase

constant method is 14.014 Gc/s. One reason
for the discrepancy is due to not taking 8

into account.
To demonstrate the fact that the cutoff

frequency measurement is independent of

the coupling hole, a vertical slit was cut in
the short. The first and sixth resonant fre-

quencies were 18.348 Gc/s and 25.810 Gc/s,
respectively, and the cutoff frequency was

14.047 Gc/s which is only 6 Me/s less than
the first calculation.
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Characteristics c}f Transient

Parametric Amplification of Elastic

Waves in YIG

The observation of a transient mode of

quasi-degenerate p21i7tUIetI_iC amplification

of elastic waves in YIG was reportedl in an
earlier letter along with other modes of
operation. The purpose of this correspon-

dence is to describe further experiments that
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Fig. 1. Oscilloscope photographs showing inde-
pendence of transient gain on pump pulse width.
Upper trace in each photo is video detected pump
Pulse. Lower traces: sq@ frequency 1 Gc/s;
pump frequency 2 Gc/s; input slgn?l level 13
dBm; pump power 1.5 watt peak; signal Pulse
width 2 PS; pump, pulse width (a) PumP Off,
(b) 0.5 Ps, (c) 1.0 #s, (d) 1.5 Ps, (e) 2.0 w hori-
zontal time 1 #s/cm, dc magnetic field 1200
Gauss.

Fig. 2. Fxpanded view of transient gain phenom-
enon. Signal fr,eauency 1 Gc/s; pump frequency 2
Gc/s; umut slg,nal level 13, dBm; pump power
1.5-watt peak; signal pulse wndth 2 MS; pump Pulse
width 1, Ps; dc magnetic field 1200 Gauss; hori-
zontal time base 0.4 us/cm.

have been conducted in order to character-
ize in greater detail the very high gain,
transient amplification process in the micro-
wave frequency range.

As in the previously reported measure-
ments, thin wire excitation was used at both

ends of the [111] oriented YIG crysta~ bar

(e)

Fig. 3. Selective amplification over the range of the
signal Pulse duration. Upper trace in each photo is
video detected pump pulse. Lower traces: sicnal
f~equency 1 Gc/s; pump frequency 2 Gels; input
signal level 13 dBm; pump power 1.5-watt peak;
signal pulse width 1.5 Ps; pump pulse width 0.5 us;
p:~~~tal time 1 ~s/cm; dc magnetic field 1200

that measured 1.48 cm in length and 0.33

cm on each side. All of the (data was taken
by observing the reflected pulses at the
signal input end of the bar. The signal fre-

quency was maintained at I Ge/s and (the
pump frequency held constant at approxi-
mately 2 Gc/s. For an RF signal input level
of – 13 dBm and a magnetic bias field

aligned parallel to the bar axis of 1200
Gauss, three elastic wave pulses were de-

tectable with no pump power applied. ‘l[’he
pulses were separated in time by an interval

corresponding to the velocity of propaga-
tion of transverse elastic waves in YIG.

With the signal pulse width maintained
constant at 2 ps, the series of oscilloscope
photographs shown in Fig. 1 was taken. In

Fig. l(a) the pump frequency was turned

off, and in Fig. 1 (b) through (e) the pu rnp
frequency was turned on with pulse widths
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