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a little further in order to point out an ap-
parent anomaly in the use of hybrid modes.
In addition to the problem just dis-
cussed, six-component hybrid modes have
been found to be necessary for general
solutions in ferrite-loaded rectangular wave-
guides®® and in rod-loaded, dielectric or
ferrite, circular guides.®!® Hybrid mode
solutions have been found by taking linear
combinations of TE and TM modes in each
region and matching all fields parallel and
fluxes normal to the discontinuity; in prac-
tice, it is necessary to match only four com-
ponents to achieve this. To check this
method, we will compare the results ob-
tained in a particular problem which is
solved by both hybrid and LS modes.
Consider an isotropic, rectangular wave-
guide divided into two transverse regions
having different dielectric and magnetic
properties. The interface, in the x-z plane,
occurs at y=c¢ and the guide sidewalls are
at y=0 and y=25. Propagation is in the z
direction. The TE and TM solutions are
known in each region and are to be com-
bined in proportions to be determined by
matching considerations. There are four un-
known amplitude constants. By matching
four field components across the boundary,
the unknown constants may be eliminated,
resulting in an eigenvalue equation.
Matching E,, H;, E., and H, at y=c¢ we
find after some algebraic manipulation, that
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These hold for all k,. To be sure that (52)
is not the same as (54), a numerical solution
of the latter was substituted into the former
and found not to be satisfactory. This must
almost certainly be true of (49) and (53)
as well. Even though the fields are com-
pletely matched in all cases, the eigenvalue
equations obtained are inconsistent!

As a variant of the previous hybrid ap-
proach, six-component hybrid modes were
formed by taking combinations of LSE and
LSM modes (where before, TE and TM
pairs were used). First of all, D, and B,
were matched. Then, when E, and E, were
matched, (53) resulted; when H, and H,
were matched, (54) was obtained. No dis-
agreement appears here as the eigenvalue
equations turn out correctly.

It is difficult to believe that (49) and
(52) are completely wrong. After all, they
were derived from modes that individually
satisfied Maxwell’s equations in the homo-
geneous regions and, taken in pairs, the in-
ternal boundary as well. Note that (53)
and (54) result from (49) and (52) when
k=0 is substituted. Although this condi-
tion is not physically realizable for LSM
modes and is unduly restricting for LSE
modes, it suggests that there are particular
values of %, (not necessarily zero) for which
correct solutions of (49) and (52) may be
found. It is likely that these roots correspond
to a restricted range of solutions and there-
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where the cutoff relation is

k2t Ry RS = Rk (50)
and

k= — 4T (51)

The subscripts 1 and 2, on k, and &, refer to
the regions in which 0<y<¢ and ¢<y<?,
respectively. &, and %k, must be the same in
both regions so that the fields will be
matched for all x and 2. ks is given by (44).

If now, E,, H., E., and D, are matched,
(52) results.

fore furnish incomplete sets. Examination
may reveal that all the roots of (49) satisfy
(53) although, as was evident from the
numerical example, the converse is not al-
ways true.

Because of the questionable result ob-
tained, there is a good case for a critical re-
examination of the derivation and use of
hybrid modes. There is something unsatis-
factory about the present method and, un-
less the example given is fallacious, a num-
ber of similar studies will have to be recon-
sidered.
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The eigenvalue equations (49) and (52)
are both rather involved. We know, on firm
theoretical grounds, that LS modes should
give correct results. Therefore, using LSM
and LSE modes respectively, the following
are found:
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Measurement of Cutoff Frequencies

Measurements of guide wavelengths and
cutoff frequencies are often of interest in
experimental investigations of waveguides
with general cross sections. When necessary
measuring equipment is not available, the
phase constant measurement described by
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Altschuler! provides a simple method of de-
termining the cutoff frequency, which is
readily obtainable from the phase constant
of the waveguide. However, if a more accu-
rate determination is required, the preceding
method may not be adequate. A more ac-
curate and convenient method for determin-
ing cutoff frequencies is presented here.

It is assumed that the waveguide under
consideration is uniform, cylindrical, and
with an arbitrary cross section. It is possible
to form a resonant cavity by shorting both
ends of a guide. Through an iris in one of the
shorts, energy is fed into the cavity, and
resonance is observed using a directional
coupler and a detector setup as shown in
Fig. 1. Let fo and f, be two resonant fre-
quencies of the cavity with f, larger than fo.
The two resonant modes must be in the same
transverse variation with only the number
of longitudinal variations differing by an
integer ¢. In other words, if m and # repre-
sent the transverse variational numbers, and
p represents that of the longitudinal, then
fo is in the (m, », ) mode, and f, is in the
(m, n, p+q) mode.

detector

Directional
Waveguide under test

— iris short
frequency -swept } ]

signal

Fig. 1. Simplified diagram for observing

cavity resonance,

The electrical length of a waveguide with
two ideal shorts on both ends is a multiple
of 7 radians. However, due to the coupling
iris in one of the shorts, the length differs
from the ideal case by a fraction 8.2 At the
resonant frequency fy, the electrical length
is expressed as follows:

Bod = (N — 8)w 1

where Bo is the phase constant, d is the
physical length of the line, and N is an in-
teger.

The physical length of the cavity at
resonance is a multiple of half guide wave-
lengths. In a similar argument? the length is

d = (N — de)ho/2 at fo (2)

and

d = (N— 38 + qr/2 atf, (3
where \¢ and A, are the guide wavelengths
at fo and f,, respectively. Using (1)-(3) and
eliminating N results into

2d = (g + 8o — 8N/ (ho — A, (4)

If the frequency range of operation is not
too wide, the fractions 8, and 8§, are almost
equal, as will be demonstrated later. Equa-
tion (4), therefore, reduces to

9/2d = 1/x — 1/% &)
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and it is independent of $, i.e., independent
of the coupling iris. Expressing the guide
wavelength of (5) in terms of resonant and
cutoff frequencies, and after simple alge-
braic manipulations, the cutoff frequency
of the waveguide is expressed as follows:

J&=12—[4/4+ (U2 — fH/4] ()

where A4 =gqc/d, and ¢=2.99792X108
meters/s.

It should be noted that the accuracy of
(6) depends on the measurement of the
resonant frequencies fy and fo. For long sec-
tions of waveguide, two adjacent resonant
frequencies (¢ =1) are so close together that
commercial wave meters cannot give ac-
curate resolution. It is suggested, therefore,
that investigations be performed on rela-
tively short sections and that ¢ be taken
greater than one.

A 2.996-inch K-band (WR-42) wave-
guide section was shorted on both ends with
a %-inch coupling hole made at the center of
one end plate. The cavity has six resonant
frequencies in this band, with the first and
the sixth resonances occurring at 18.341
Ge/s and 25.798 Ge/s, respectively. The cut-
off frequency calculated by (6) is 14.053
Ge/s (with ¢=35), with accuracy up to five
significant figures, compared with the exact
value 14.051 Ge/s. The value of the differ-
ence 3,— 3y is in the order of 107%, and the
magnitude of 8§ is about 0.032. The average
of six cutoff frequencies each calculated for a
measured resonant frequency by the phase
constant method is 14.014 Ge/s. One reason
for the discrepancy is due to not taking &
into account.

To demonstrate the fact that the cutoff
frequency measurement is independent of
the coupling hole, a vertical slit was cut in
the short. The first and sixth resonant fre-
quencies were 18.348 Gec/s and 25.810 Ge/s,
respectively, and the cutoff frequency was
14.047 Ge/s which is only 6 Mc/s less than
the first calculation.

N. F. AupEn

H. Y. YEE
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Characteristics of Transient
Parametric Amplification of Elastic
Waves in YIG

The observation of a transient mode of
quasi-degenerate parametric amplification
of elastic waves in YIG was reported! in an
earlier letter along with other modes of
operation. The purpose of this correspon-
dence is to describe further experiments that
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CORRESPONDENCE

Fig. 1. Oscilloscope photographs showing inde-
pendence of transient gain on pump pulse width.
Upper trace in each photo is video detected pump
pulse. Lower traces: signal frequency 1 Ge/s;
pump frequency 2 Ge/s; input signal level 13
dBm; pump power 1.5 watt peak; signal pulse
width 2 ws; pump, pulse width (a) pump off,
(b) 0.5 us, (c) 1.0 us, (d) 1.5 us, (&) 2.0 us, bori-
zGontal time 1 ws/cm, dc magnetic field 1200

auss.

Fxpanded view of transient gain phenom-
enon. Signal frequency 1 Gc/s; pump frequency 2
Gc/s; input signal level 13 dBm; pump power
1.5-watt peak; signal pulse width 2 us; pump Dulse
width 1 us; dc magnetic field 1200 Gauss; hori-
zontal time base 0.4 us/cm.

Fig. 2.

have been conducted in order to character-
ize in greater detail the very high gain,
transient amplification process in the micro-
wave frequency range.

As in the previously reported measure-
ments, thin wire excitation was used at both

ends of the [111] oriented YIG crystal bar
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Fig. 3. Selective amplification over the range of the
signal pulse duration. Upper trace in each photo is
video detected pump pulse. Lower traces: signal
frequency 1 Ge/s; pump frequency 2 Ge/s; input
signal level 13 dBm; pump power 1.5-watt peak;
signal pulse width 1.5 us; pump pulse width 0.5 us;
}éorizontal time 1 ws/cm; dc magnetic field 1200

auss.

that measured 1.48 c¢m in length and 0.33
cm on each side. All of the data was taken
by observing the reflected pulses at the
signal input end of the bar. The signal fre-
quency was maintained at I Ge/s and the
pump frequency held constant at approxi-
mately 2 Ge/s. For an RF signal input level
of —13 dBm and a magnetic bias field
aligned parallel to the bar axis of 1200
Gauss, three elastic wave pulses were de-
tectable with no pump power applied. The
pulses were separated in time by an interval
corresponding to the velocity of propaga-
tion? of transverse elastic waves in YIG.
With the signal pulse width maintained
constant at 2 us, the series of oscilloscope
photographs shown in Fig. 1 was taken. In
Fig. 1(a) the pump frequency was turned
off, and in Fig. 1(b) through (e) the pump
frequency was turned on with pulse widths

2 A. E. Clark and R. E. Strakna, “Elastic constants
of Single-Crystal YIG,” J. Appl. Phys., vol. 32, pp.
1172-1173, June 1961.



